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ABSTRACT: Previous research has shown that simple single degree of freedom
(SDOF) models can be used successfully to reproduce the force–time response of
composite plates subjected to low-velocity impacts (LVI). In particular, a simple
spring–mass (SM) model yields accurate estimates of the peak contact force as a
function of impact energy. The major limitation of this model is that it applies only
to elastic impact events, and ceases to be valid after the onset of damage. The effort
of this investigation is to modify the SM model, while retaining the simplicity of its
formulation, and to extend its range of validity to the super-critical regime. Three
models are derived, namely the damaged stiffness, the dissipated energy, and the
spring–mass–dashpot models, and their validity is examined through comparisons
with experimental data. Impact force–time traces for carbon/epoxy laminates
exhibiting various combinations of laminate thickness and support span are
collected, and it is found that the additional unknowns introduced for each of the
models, although determined empirically, are strongly related to the structural
parameters for each configuration investigated.
KEY WORDS: impact modeling, impact testing, damage resistance, progressive
damage.
INTRODUCTION

d

ICALLY, THE FIRST impact tests performed on composite materials for
ace applications were noninstrumented [1,2]. The target laminates or
were impacted at a nominal impact energy level, and the subsequent damage
red with destructive and nondestructive inspection methods. Eventually, the
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goal of the test was to inflict impact damage to the structure, for certification purposes,
and then to measure the residual properties of the panel. This practice originated the
tradition to build the so-called damage maps, which relate a measure of damage (such
as dent depth or projected delamination area) to incident kinetic energy, as well as the
compression after impact (CAI) curves, where the residual compressive strength of the
panel is plotted against the incident kinetic energy. Later developments, which coincided
with the commercialization of instrumented impact devices [3–5], indicated an advantage
in the use of dynamic load-cells. The use of an instrumented drop tower such as the
General Research Corporation (GRC) Dynatup� enables the recording of force and
time, which are directly measured, as well as energy, deflection and velocity, which are
calculated. In conventional experimental setups [3–11] a flat composite plate is subjected
to an out-of-plane, concentrated load by means of a falling weight and it is possible to
characterize the panel’s elastic behavior, failure initiation, and failure propagation in terms
of applied dynamic force and energy.

In order to facilitate the understanding of these concepts, a brief summary of the
terminology used is reported:

. Impact energy – incident kinetic energy of the impactor,

. Peak force – maximum recorded force,

. Critical force – value of the force at which a first change in out-of-plane stiffness of the
material occurs, also denoted as delamination threshold,

. Critical energy – value of the impact energy corresponding to the critical force,

. Dissipated energy – amount of energy absorbed mainly in damage mechanisms but also
in other nonconservative phenomena (i.e., vibrations, friction, specimen/fixture
slipping) and therefore, not restituted to the rebounding impactor,

. Total contact duration – resident time of the impactor on the target,

. Sub-critical (or elastic) impact events – range of impact energy values below damage
threshold,

. Super-critical impact events – range of impact energy values above threshold.

Here, failure is defined as a sharp drop (clearly visible) in the force–time curve,
corresponding to damage initiation, either in the ply plane or at the interface of two
adjacent plies. The nature of in-plane failure is matrix cracking, splitting, or fiber
breakage, while the nature of interply failure is delamination induced by interlaminar
shear.

Experimental Setup

The analytical equations derived in the following paragraphs are validated with the
results of impact tests performed on AS4/NCT301 laminates, having [0/90/�45]ns layup,
with n¼ 2–5 [6]. A total of five structural configurations (summarized in Table 1) are
tested, by varying aperture span and laminate thickness. The reference configuration C1
is a 32 ply (n¼ 4) laminate with nominal thickness of 0.145 in. (3.68mm), supported over
a 2.5 in. diameter circular aperture. The fixture is comprised of two steel plates having
a circular aperture of two different sizes, which are clamped together by four screws
located at the periphery of the composite target. The composite plate is situated between
the two steel plates and is positioned over the aperture with the aid of three locating pins.
The four screws are then tightened to provide (partially) clamped boundary conditions.
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The instrumented drop tower is a GRC Dynatup� model 8250, and the software used for
data recording/analysis is the 930 version. Impactor carriage weight is 9.92 lbs (4.51 kg),
and the striker, or tup, is a 6061-T6 aluminum cylinder with a 1.5 in. (38.1mm) diameter
hemispherical end.

ELASTIC RESPONSE AND DAMAGE INITIATION

Sub-critical Regime

A force–time trace is the typical tool used to interpret data from instrumented impact
tests (Figure 1). The onset of specimen-indenter contact is noted by the detection of
a non-zero contact force: as the indenter presses into the specimen, the contact force
increases. A sub-critical test, which is ‘purely’ elastic in nature, can be represented by a
half sine wave, if the ratio of impactor to target mass is sufficiently high [6]. Using a
spring–mass model [12]:

m €xþ K0x ¼ 0 ð1Þ

where m indicates impactor mass, x is the transverse displacement of the carriage (which
is assumed to coincide with the target, hence assuming that there is no significant
permanent indentation), and K0 is the pristine (undamaged) structural stiffness, and setting
the instantaneous value of the contact force P ¼ �m €x, it is possible to obtain the known
sine function:

x ¼ V

ffiffiffiffiffiffi
m

K0

r
sin

ffiffiffiffiffiffi
K0

m

r
tc

 !
ð2Þ

where V is the impact velocity and tc the total contact duration.
Provided that the system behaves in an elastic fashion, and the assumption of sine wave

is correct, the total contact duration of the impact event is a direct indication of the
effective structural stiffness of the target, and is independent of the impact energy level
at which the test is performed [3,6]:

tc ¼ �

ffiffiffiffiffiffi
m

K0

r
ð3Þ

Table 1. Summary of experimental setup.

Configuration Number of plies Nominal thickness (mm) Aperture diameter (mm)

C1 32 0.145 (3.68) 2.5 (63.50)
C2 32 0.145 (3.68) 5.0 (127.0)
C3 16 0.072 (1.83) 2.5 (63.50)
C4 24 0.108 (2.74) 2.5 (63.50)
C5 40 0.181 (4.60) 2.5 (63.50)
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Employing a simple energy balance, under the assumption of linear elastic response,
the data for the peak force can then be accurately fitted by a well-accepted power law
curve [12]:

Ppeak
SM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2K0Ei

p
ð4Þ

where Ei is the impact energy, and Ppeak
SM is the theoretical value of the peak contact force.

The peak force is therefore directly related to the effective stiffness of the structure, as is
the total contact duration, but it is also strictly dependent on incident kinetic energy, even
for an elastic impact test. It has therefore been suggested that using peak contact force as
the sole governing parameter may lead to ambiguous results when comparing the
impact performance of different composite panels [6]. For the same reason, instrumented
‘coin-tap’ test devices [13], which are portable impulse hammers, employ contact duration
rather than peak force to detect the presence of damage within a structure during aircraft
inspection.

The signal generated and recorded by the data acquisition system (Figure 1) is a complex
combination of the true mechanical response of the specimen, inertial loading of the tup,
and low-frequency fluctuations [3]. The first component is the obvious objective of the
investigation, yet often the second and third components can overshadow the real results.
In particular, the inertial loading is the force caused by rigid body acceleration of the
specimen from a rest position to the velocity of the impacting assembly, and it generally
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Figure 1. Representative contact force and kinetic energy vs time history for a low-energy elastic test.
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dominates the tup signal for the first 10–100 ms. On the other hand, the low-frequency
fluctuations typical of impact tests are superimposed oscillations primarily caused by
stored elastic energy and inertial effects. The force–time signal is therefore not necessarily
indicative of the reaction of the specimen, and the importance of understanding the
significance of these phenomena lies in the fact that the operator or the automated
data analysis routine (as the Dynatup� 930 software) may incorrectly select the value of
the peak force if the inertial peak or any of the following oscillations is the highest load
value recorded. Since the oscillations, also referred to as ringing, are harmonic about the
mean or true signal value, the peak force data can potentially be incorrect.

The energy–time curve is customarily presented in the same plot as the force–time curve
(Figure 1). In an ideal setup, the energy curve would peak at the same time as the force
curve, which is theoretically reached when the velocity of the impactor approaches zero at
the point of maximum deflection. In reality, however, instrumentation errors introduce a
slight delay in the signal and the curve peaks effectively a few microseconds after the force–
time curve. At the end of contact, part of the incident kinetic energy has been dissipated,
even in an elastic test, in non-conservative phenomena, e.g., as friction along the rails and
slipping at the boundaries. The energy balance that relates impact energy (Ei) to the elastic
strain energy (EE) is also comprised of the non-conservative term (ENC) and the dissipated
energy term (ED) [14], associated with the damage creation and propagation:

Ei ¼ EE þ ENC þ ED: ð5Þ

For each impact test, the peak contact force is recorded and plotted against the incident
kinetic energy, and the results are reported in a force–energy plot such as the one in
Figure 2 for reference configuration C1. The curve to the left of the damage threshold
value is the sub-critical regime. In this region, the peak force recorded during an elastic
impact test varies according to Equation (4) if a simple spring–mass (SM) model is used.
Similarly, the energy dissipated during an impact event can be plotted against the incident
kinetic energy, as in Figure 3. Again, the region to the left of the damage threshold is
the sub-critical regime, and it can be seen that even in this regime the energy dissipated
is non-zero, as mentioned earlier.

Super-critical Regime

If the impact energy level at which the test is conducted is sufficiently high, the damage
threshold is exceeded and the event falls in the super-critical regime. For impact energies
just above the critical level, the force–time trace has the appearance of curve A in Figure 4.
In this curve, the contact force increases up to the point of failure, then suddenly drops,
and is followed by the onset of the low-frequency oscillations in the signal mentioned
before. Eventually load picks up again, but it never reaches the same value as the one
where failure initiated, hence critical and peak forces coincide. The onset of damage is
associated to a specific value of contact force and kinetic energy, and this value remains
constant throughout the entire supercritical regime, independently of the impact energy
level. For greater impact energies, as in the case of curve B in Figure 4, the impactor has
sufficient momentum to reach a greater value of contact force after initiating damage.
Therefore, critical and peak forces do not coincide. Eventually, when the kinetic energy
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Figure 2. Peak impact force plot, highlighting the damage threshold, and sub- and super-critical regimes.

Figure 3. Dissipated energy plot, highlighting the damage threshold, and sub- and super-critical regimes.
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reaches the maximum load bearing capability of the plate, the value of the peak force
ceases to increase, and it remains constant around a mean ultimate dynamic load.
For strain-rate insensitive materials, such as modern carbon/epoxy systems, this value has
been shown to coincide with the mean static ultimate load [6–8]. In the supercritical
regime, the value of peak force recorded in a super-critical event is however quite
lower than the one predicted by the spring–mass model for the same level of impact
energy (Figure 2). The discrepancy between the experimental results and Equation (4)
progressively intensifies after the damage threshold is exceeded and, most notably,
it increases unboundedly once the dynamic plateau is reached. The error in which
a user may incur, if not aware of this complex behavior is demonstrated by Figure 5(a),
from Hinrichs et al. [15]. This plot emphasizes the discrepancy in the measured versus the
predicted response, and which the authors suspected to be associated to the creation
and propagation of damage. The symbols represent the different values of panel
thickness tested. Re-plotting the peak force data against the nominal impact energy
(Figure 5(b)) shows that the majority of the tests conducted effectively falls in the region
of dynamic plateau. Inconsistent trends are also reported by Nettles and Douglas [9]
for the projected delamination area using peak force as the damage metric. In this
case as well the tests are conducted in the region of the dynamic plateau, where if the
impact energy increases, the damage size also increases but the peak force remains
constant [6].

On the other hand, a plot of the energy dissipated in the creation and propagation of
damage (Figure 3) shows a monotonic, nearly quadratic increase with available kinetic
energy (1 : 1 straight line). It is well accepted in the literature [6] that, absorbed energy
can be a very useful tool to assess the extent of damage in the laminate, provided that an
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Figure 4. Representative contact force profiles for two damage-inducing impact events, also showing inertial
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Modified SDOF Models for Impact Response of Composite Plates 2241



understanding of the losses in the elastic regime is available. While current Federal
Aviation Administration (FAA) damage tolerance certification efforts still rely on impact
energy-based rather than force-based criteria [2], the use of an instrumented device,
and hence of contact force, undoubtedly presents numerous advantages for gaining more
in-depth understanding of the impact response of composite panels. For that reason,
a reliable tool is required to predict the value of contact force at failure, but also the value
of peak contact force. The following section describes the methods by which Equation (4)
can be modified to account for the discrepancy on the value of peak force between the
prediction and the experimental data, while retaining at the same time the simplicity of
a single degree of freedom (SDOF) model.
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lie in the dynamic plateau.
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MODIFIED SDOF MODELS

Previous Research

Abrate [12] provides a complete formulation of the spring–mass model for the elastic
system of a projectile impacting a plate (Figure 6(a)). The model includes the effective
structural stiffness of the target, which is represented by the two linear bending and shear
springs in series (Kb and Ks), and the nonlinear membrane and contact stiffness springs
(Km and K):

M2 €x2 þ Kbsx2 þ Kmx
3
2 þ K x1 � x2ð Þ

�
¼ 0 ð6Þ

where M2 is the mass of the target, x2 is the transverse displacement of the target and its
temporal derivatives, x1 is the transverse displacement of the tup, and � is the nonlinear
indentation exponent. If the membrane effects are negligible and the indentation
component is not significant, the system can be linearized to the one of Figure 6(b),
which leads to the Equation (4). While Equation (6) refers to a purely elastic response,
which means that it can be used only up to the damage threshold, Olsson et al. [16] report
that Equation (6) can be used to predict the force required for damage initiation. The
golf industry has used various spring–mass–dashpot (SMD) models extensively and
successfully to capture the highly nonlinear response of the viscous golf ball. Evolutions of
simpler models continue to appear, and the resulting predictions become progressively
more accurate. The Simon model [17] can be written as:

m €xþ C _xþ kx3=2 ¼ 0 ð7Þ

where, C ¼ ðk�x3=2Þ. The k and � coefficients have to be determined by experimental
data fitting. Johnson and Lieberman [17] suggest a modified nonlinear model that
includes a � exponent, which captures the impact velocity-dependent effects observed
experimentally on the visco-elastic material:

m €xþ C _x� þ kx3=2 ¼ 0: ð8Þ

The nondimensional exponent �, obtained by experimental fitting of golf ball impact data,
has a value within the range 1.25–1.50, close to the theoretical value of 3/2 for an elastic
impact between a sphere and a flat barrier [18]. Cochran [19] combines a linear SMD
model for the plate with a nonlinear SMD for the ball, thereby obtaining a contact force
proportional to the 3/2 exponent of the displacement, as predicted for small deformations
of a sphere [18]:

m €xþ c _x _xj j1=2þkx xj j1=2¼ 0 ð9Þ

where m is the mass of the ball, and c and k have now units of (N/m)3/2 and (N s/m)3/2.
A modification of the SM model is suggested by Gong and Lam [20] to include the effects
of structural damping on the transient response of laminated plates. A finite element (FE)
approach is implemented using a two-layer beam geometry for the target, comprised of a
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basic elastic layer (1) and damping layer (2), which are modeled as a spring–mass–damper
system:

m1 €x1 þ
�stK1

!11
_x1 þ K1 þ K2ð Þx1 � K2x2 ¼ 0 ð10Þ

where x is the transverse displacement, �st is the effective structural loss factor, !11 is
the fundamental frequency of the two-layered panel, K1 is the equivalent stiffness of the
panel, and K2 the effective contact stiffness. Satisfactory results are obtained with this
approach, but the method suffers from the necessity of using FE codes for the expensive
computational effort required. A FE model is integrated by Tomblin et al. [10,11] with
experimentally determined contact laws to predict the impact response of sandwich
panels. These laws, determined from indentation tests on rigid base, are characterized by
an initial elastic region up to a critical value of the indentation depth, which is followed
by a nonlinear, inelastic region up to facesheet fracture.

P0�cr ¼ C0u

Pcr�fract ¼ C1 þ C2u
C3

ð11Þ

where the C coefficients are obtained by curve fitting of the experimental data, and are
a function of skin and core properties. The energy dissipated in contact deformation is the
area enclosed between the loading and unloading portion of the curve. If the contact laws
are linearized in both the loading (KL) and unloading (KUL) phases, the energy dissipated
is simply a function of the ratio KL/KUL. The model can thus be used to predict the
energy dissipated during the impact event in damage initiation and propagation. This
type of empirical formulation, which requires extensive correlation of coupon-level test
data to simplified analytical or numerical models, is typical of certification-oriented
programs. Anderson [21] successfully introduces energy-absorbing elements to account
for material damage in thin sandwich laminates. Impact energy is thus dissipated through
the use of velocity-proportional or displacement-proportional dampers, or using a

 
Figure 6. (a) Complete spring–mass model that includes bending, shear, membrane, and indentation
stiffness springs and (b) linearized sdof model [12].
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complex stiffness formulation. Unfortunate attempts are initially made using a velocity-
proportional damper in parallel with a nonlinear spring (Voigt element):

m €xþ cVv _xþ kxn ¼ 0 ð12Þ

and using a displacement proportional damper:

m €xþ cdxþ kxn ¼ 0: ð13Þ

In the preceding equations, m is the target mass, c is the velocity or displacement
proportional damper, k the effective bending stiffness, and n an empirical exponent greater
than 1. However, both approaches prove to be inaccurate when compared to experimental
results due to the initial velocity requirements on the system, which result in a nonzero
contact force (Equation 7), and to an apparent lack of sensitivity to displacement
variations (Equation 8). A partial success is achieved using complex stiffness damping:

m €xþ ki 1þ i�ð Þx ¼ 0 ð14Þ

where k is a linearized stiffness, and � is an empirically determined damping coefficient,
but both real and imaginary components are not of easy determination. Ultimately, he
reports achieving the most satisfactory results with a velocity-proportional damper
in series with the nonlinear spring (Maxwell element). Since now both displacement
and force traces are to be determined, the model has effectively two degrees of freedom
(TDOF), and becomes computationally more expensive:

m €xþ cMv _x�
cMv F=kð Þ

1=n _F

nF
¼ 0 ð15Þ

where F is the contact force and its time derivative, and the other symbols are the same
as in the previous equations. Hoo Fatt and Park [22] employ a nonlinear spring P(x),
which represents the indentation behavior of the facesheet on a rigid foundation,
and a constant-force dashpot Qd, which represents the dynamic crushing resistance of
the core:

m €xþ P xð Þ þQd ¼ 0: ð16Þ

The solution for the peak force Pmax is obtained by numerical integration and is a
complex function of impactor mass, impactor velocity, and global and local stiffness.

In the previous section, it was shown that Equation (4) successfully estimates the value
of the peak contact force for linear elastic systems, but progressively overestimates
the experimental results for increasing impact energies beyond the damage threshold
(Figure 2). This phenomenon can be seen also in Figure 8 where, for a supercritical impact
energy level, Equation (4) predicts a half-sine force–time curve (denoted as K0 model).
The K0 model predicts a higher peak force and shorter contact duration than the one
measured experimentally; however, the agreement is excellent up to the point of failure,
which occurs at time tf. After failure, the two traces begin to diverge, and the discrepancy
in the peak force, which occurs at time tM, is attributable to the lower value of the effective
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structural stiffness. If a similar SM model with a lower stiffness value (KD model) is used,
the agreement becomes excellent from the point of failure on.

The great advantage of these SDOF models is their simplicity, and they require modest
empirical correlation. In order to maintain the simple formulation of Equation (4) while
capturing the dynamic response associated to the presence of damage, it may be possible
to proceed in two directions. Retaining the SM model leading to Equation (4), the only
two parameters that can be modified are the effective structural stiffness K0 and the
available impact energy Ei. In the following paragraphs, two modifications of Equation (4)
containing one additional unknown related to the state of damage are developed, and are
referred to as ‘damaged stiffness’ (KD) and ‘dissipated energy’ (ED), model respectively.
If, however, an approach similar to Equations (7–9, 12, 13, 16) is pursued, a SMD model
can be employed. The model captures the dynamic response of the damaged panel by

Figure 8. Example of force–time trace highlighting the discrepancy between the prediction of the SM model,
the experimental data, and the accuracy of the damaged stiffness model.

Figure 7. The response of the target/impactor system is modeled as a linear model of the target in series with
a nonlinear model of the impactor [19].
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means of a nonlinear viscous damper proportional to the impact velocity, which is
characterized by two additional unknowns.

Damaged Stiffness (KD) Model

For a supercritical impact (Figure 9), the force–time trace presents at first a sharp drop
in correspondence of the point of failure initiation, which is indicated by a sudden decrease
in the transverse stiffness of the plate [4,6]. After the drop, the contact force increases
further (provided that the impactor has enough kinetic energy), but the slope of the
curve is somewhat lower than in the earlier region due to the lower stiffness of the target.
Other more or less distinct drops can be seen in the force–time trace, corresponding to
other points of failure in the material. Each of these points (jth) can be described by a
pair (tfj, Pmj) of peak force and time, and the value of the instantaneous structural stiffness
for that portion of the trace can be denoted as K(j�1)D. For example, first failure occurs
at (tf 1, Pm1), and the effective structural stiffness up to that point is K0 (pristine or
undamaged value). It is therefore possible to account for the progressive change in
transverse stiffness, associated with the instantaneous state of damage within the panel,
throughout the entire impact event. A modification of Equation (4) that accounts for the
effective instantaneous structural stiffness can be written as:

Ppeak
KD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 K0

tf1
tM

� �
þK1D

tf2 � tf1
tM

� �
þK j�1ð ÞD

tfj � tj�1

tM

� �
þ . . .þK M�1ð ÞD

tM � tM�1

tM

� �� �
Ei

s

ð17Þ

Figure 9. Super-critical force vs time history highlighting the different regions of instantaneous damaged
stiffness.
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where M�1 is the total number of drops in the force–time curve up to the point of peak
force (tM). Since peak force is reached at the peak of the force–time curve, where the
impactor arrests its fall and begins to reverse its motion, only the loading part of the curve
is of interest in the prediction of peak force, and it is fair to normalize the time to failure
with respect to the time to peak force. This ratio is a nondimensional term, having values
between zero and unity, which is indicative of how much of the loading curve undergoes
the impact event at a prescribed value of the structural stiffness. It is worth noticing that
for a purely elastic or purely critical event, where peak force is reached exactly at the apex
of the force–time curve, time-to-failure equals time-to-peak-force, hence Equation (17)
reduces to Equation (4). To give an example of how the modified model can be applied,
it is possible to consider the supercritical event of Figure 9. There appear to be at least
two large drops in the curve before peak force is reached, hence:

Ppeak
KD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 K0

tf 1
tM

� �
þ K1D

tf 2 � tf 1
tM

� �
þ K2D

tM � tf 2
tM

� �� �
Ei

s
: ð18Þ

Since tf 1¼ 0.675m s, tf 2¼ 1.375m s, and tM¼ 1.637m s, the three nondimensional terms
become:

Ppeak
KD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 K0 0:412ð Þ þ K1D 0:428ð Þ þ K2D 0:160ð Þ½ �Ei

p
: ð19Þ

It can be easily seen that the three time-ratios add up to unity, or 100%. The great
advantage of this type of approach is that it retains the simple formulation of a SDOF
model, and it is valid in the entire range of impact energy levels. With respect to the elastic
SM model, this approach requires only additional information regarding KjD, which has
to be determined empirically. However, this type of approach can yield extremely accurate
results (Figure 10, Equation (17)) and lends itself to practical implementation into a
progressive failure analysis (PFA) and FE code.

Dissipated Energy (ED) Model

It has been noted that the majority of the energy absorbed during an impact event is
dissipated in the initiation and propagation of damage [14]. This energy increases in
a nearly quadratic fashion with increasing available impact energy (Figure 3):

ED / E
p
i / V2p ð20Þ

where V is the impact velocity, and p¼ (1.25–2.0). It is thus fair to assume that the
state of damage within the panel is proportional to the impact velocity elevated to an
exponent comprised between 2.5 and 4.0. Nevertheless, the portion of incoming kinetic
energy that is absorbed in matrix damage, delamination origination, and fiber breakage
does not contribute to the panel’s dynamic structural response. The initiation and
propagation of damage has the effect of reducing the amount of energy available for
reaching the theoretical value of peak force. Leaving the effective structural stiffness
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unmodified (K0), it is then possible to substitute the nominal impact energy (Ei) of
Equation (4) with the effective impact energy (E �

i ), where:

E �
i ¼ Ei � ED: ð21Þ

As in the case of Equation (17), it is necessary to employ a ratio of time-to-failure
against time-to-peak-force to separate the force–time trace into segments, and to make the
individual terms nondimensional (Figure 9). For the first segment (before the onset of
damage), the energy dissipated is assumed to be negligible, and the entire available kinetic
energy contributes in achieving the theoretical value of peak force.

Ppeak
ED ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K0

tf 1
tM

� �
Ei þ

tf 2 � tf 1
tM

� �
E �j
i

� �
þ . . .þ

tM � tf
tM

� �
E �M
i

� �� �s
ð22Þ

where E�j
i ¼ Ei � Ej

D and j¼ (1�M) as in Equation (16). This type of approach proves to
be as accurate as the one of Equation (17), but has the disadvantage that the instantaneous
value of the energy dissipated is not as readily available as the structural stiffness KD.
A simplification can then be made, and instead of dividing the curve into multiple
individual segments, it is divided only into two regions, before and after failure:

Ppeak
ED ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K0

tf 1
tM

� �
Ei þ

tM � tf
tM

� �
E�M
i

� �� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K0 Ei �

tM � tf
tM

� �
ED

� �s
ð23Þ

Figure 10. Damaged stiffness and dissipated energy model predictions for configuration C1.
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where the symbols bear the same significance as in previous equations. The great
advantage of this simplified model is that only the values of tf and ED (total energy
dissipated, plotted in Figure 3, which is simply a fraction of Ei) need to be determined,
therefore minimal experimental correlation is required. However, this model tends to
slightly overestimate the effective result (Figure 10, Equation (23)), mostly because it
assumes that energy is not dissipated in the elastic regime. In practice, it has been shown
(Figures 1 and 3) that a small yet measurable portion of energy is absorbed in a
nonconservative phenomena even in the elastic regime, as stated by Equation (5).
To further simplify the energy dissipated model, an assumption is made that the entire
energy dissipated in the fracture process does not contribute to increasing the peak
recorded force. In other words, that the entire amount of ED is dissipated at the beginning
of contact (tf¼ 0), hence:

Ppeak
ED ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K0 Ei � EDð Þ

p
: ð24Þ

The great advantage of this equation is that ED, which is the only additional unknown
with respect to Equation (4), is often readily available (or can easily be calculated) from
an impact test [3,6]. On the other hand, this equation tends to slightly underestimate the
actual value of the peak force (Figure 11, Equation (24)), since, only part of the damage
process occurs during the loading part of the curve, while the other part of it occurs after
reaching peak force.

Spring–Mass–Dashpot (SMD) Model

The SMD model embodies a nonlinear viscous damper for capturing the effect of
damage on the transient response of a panel subjected to low-velocity impact. The choice
of employing a nonlinear viscous damper rather than a nonlinear spring to model damage
is related to the nature of the event itself. In the case of a quasi-static indentation
test [11,12,21,22], the use of a nonlinear spring (displacement-proportional) to model
the load–deflection response of the plate after damage has solid physical significance.
On the other hand, the dynamic nature of the impact event is such that it lends itself
to energy-proportional (nonlinear velocity) interpretation. Herein lays the fundamental
difference with previous models. Furthermore, the nonlinear damper is proportional to
the energy absorbed in the event, and not simply the incident kinetic energy, thereby
adding a strong physical support to this model. On the other hand, the model is now
a function of two additional unknowns, which have to be determined empirically. Let us
now set:

m €xþ c _xnþ kx ¼ 0 ð25Þ

where c and n are the damping coefficient and damping exponent respectively, while the
other symbols have the same significance of Equation (1). One can also rewrite:

P ¼ K0x� cVn ð26Þ
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where P is the instantaneous value of the contact force. Considering the system to be
elastic (only a mathematical expedient), it is possible to apply the following energy
balance:

U ¼
1

2
Ppeakxmax ¼ Ei ð27Þ

where U is the work done in displacing the panel up to max deflection xmax where
the force reaches the value of Ppeak. This energy balance assumes that the internal
deformation work done by the panel coincides with the available kinetic energy, without
including any losses due to the non-conservative phenomena, which is known to be only an
approximation (Equation (5)), but helps greatly in the mathematical derivation. It is then
possible to obtain:

Ppeak
SMD ¼

1

2
�cVn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2V2n þ 8K0Ei

p� 	
¼ �

c

2
Vn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K0Ei þ

c2V2n

4

r
ð28Þ

which holds true in both the sub-critical and super-critical regimes, since for c¼ 0
(no damage) it reduces to Equation (4).

The results of applying the SMD model to the reference configuration C1 are shown in
Figure 11. The choice of the empirical parameters c and n is all but arbitrary. The damping
exponent n falls somewhere in the range 2.5–4.0 (Equation (20), and the value of the
damping coefficient c is strictly related to the value selected for n. In particular, c and n
are inversely related, and have different effects on the shape of the force–energy curve.

Figure 11. SMD predictions for configuration 1 using four combinations of the c and n parameters.
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Low values of n (e.g., 2.5, 3.0) are characterized by low values of the peak force in the
sub-critical and early super-critical regions. However, they lead to very accurate
asymptotic values in the dynamic plateau region. On the other hand, high values of n
(e.g., 3.5, 4.0) tend to give accurate predictions of the peak force in the early portions of
the curve, but fall greatly below the experimental data points in the dynamic plateau
region. Furthermore, for a specific value of n, it is possible to obtain a value of c by
integrating the equation:

ED ¼

Z
c _xndx ð29Þ

between 0–xmax, knowing the quantity of ED from the impact test data. The physical
meaning of Equation (29) is that the total work done by the viscous force associated
with the damper representing damage is equal to the total energy dissipated during the
impact event.

For configuration C1, the most accurate model features values of c¼ 1.54 and n¼ 3.00
(Figure 11). The validity of the model can however be extended to all other structural
configurations considered in this investigation (Table 1), and the results are shown in
Figure 12. More flexible configurations (e.g., C2, C3) exhibit lower values of damping
coefficient c than stiffer configurations (e.g., C5) for the same value of damping
exponent n. The coefficient c is a measure of how much damage is created, while the
exponent n is an indication of how much this damage depends on the severity of the impact
event. For that reason stiffer configurations are much more sensible to the presence of
damage (from a dynamic response standpoint only!) than flexural-dominated configura-
tions. For all configurations considered, a value of n around 3.0 has shown to give the
most accurate predictions. Setting then n¼ 3.0, the value of c for configurations C1, C3–
C5 is shown to be a function of the laminate thickness t:

c ¼ �t� ð30Þ

where �¼ 19.3 and �¼ 1.32. It is then possible to derive design curves, such as the ones
in Figure 13, which relate different values of c and n and allow for extrapolation to other
structural configurations.

CONCLUSIONS

The limitations associated with the use of a spring–mass model to describe the impact
response of composite panels have been demonstrated. Modifications were suggested that
retained the simple formulation of the spring–mass model while allowing for the inclusion
of the effect of damage on the transient response, thereby greatly improving the prediction
of peak contact force. Each of the three models developed (damaged stiffness, dissipated
energy, and Spring–Mass–Dashpot) introduces additional unknowns that need to be
empirically determined, but have a solid physical foundation. Every model offers its
own advantage, but in general the greater the accuracy, the more the empirical correlation
required.
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