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An automatic incremental solution algorithm for nonlinear static finite element analysis of delamination
propagation problems is presented. This load–displacement–constraint method iterates in the load dis-
placement space utilizing the Newton–Raphson method, allowing to trace out the complete equilibrium
path. The procedure can calculate pre- and post-critical responses of bi-dimensional problems, ranging
from stable delamination growth to structural collapse by unstable growth or delamination buckling
with arbitrarily sharp snap-back instabilities. Benchmark solution examples of established composite
materials structural problems illustrate the effectiveness of the method.
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1. Introduction

It is common practice to simulate the automatic delamination
propagation in fiber reinforced polymer composites using finite
element analysis (FEA) with direct application of linear elastic
fracture mechanics (LEFM). Propagation occurs by allowing two
coincident crack tip nodes to separate, causing a sudden loss of
adhesion and a finite delamination length increase, which coin-
cides with one element length. The computation of the mode
decomposed strain energy release rate (ERR) is performed with
the virtual crack closure technique (VCCT) [1]. Single or multiple
delamination advancements can be allowed within a solution
increment. In the first case the increment size is cutback if the total
ERR, GT, exceeds its critical value, GC, by more than a certain release
tolerance rtol. The ERR convergence criterion to be satisfied is

GT

GC
6 1þ rtol ð1Þ

If the condition is not satisfied, the computed equilibrium con-
figuration is discarded and the solution restarts with an increment
size cut down, whereas the delamination is propagated when

1 6
GT

GC
6 1þ rtol ð2Þ

In the second case the delamination is propagated until relation
(1) is satisfied, but equilibrium has to be satisfied at every finite
advancement. Therefore, for both procedures, at least one iteration
per finite advancement is needed in order to obtain a converged
equilibrium configuration. Moreover, the force imbalance suddenly
increases upon delamination advancement because of the deletion
of large nodal forces at the crack tip. This discontinuity in the out-
of-balance forces in so severe that a number of iterations is
required to reduce the force residuals within the convergence
threshold. Hence the total number of iterations increases exponen-
tially with mesh density.

Assuming that the loading is dependent on a single intensity
parameter k that controls the magnitude of all the applied loads,
which are therefore proportionally varying, the load–displacement
characteristic of the structure, also known as the equilibrium path,
presents itself as a curve in the N + 1 dimensional space spanned
by the N degrees of freedom and k, Fig. 1. As the failure becomes
more brittle, the softening branch of the curve tends to assume a
positive slope. Such a catastrophic event tends to reproduce the
failure predicted by the LEFM because the process zone and the
slow crack growth are negligible before unstable crack propagation
occurs. The critical point at which the fracture starts to propagate
is therefore a singular point where two branches having distinct
tangents intersect. Dimensional analysis showed that large and/
or slender structures with low fracture toughness and high tensile
strength are associated with brittle propagation [2]. Since compos-
ite laminates are slender structures with large in-plane strength
but relatively low fracture toughness, delamination propagation
is intimately connected with such singularities. Hence, even if
the composite is a linear elastic material and no elastic instabilities
occur, passing the critical point can result in snap-back or
snap-through instability due to the global softening associated to
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Fig. 1. Equilibrium path for a bi-dimensional case with snap-back or snap-through
instability.

Fig. 2. Schematics of a crack length control scheme increment in a nondimensional
load–displacement plot.
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unstable delamination propagation, Fig. 1. When this occurs, a
branch of the equilibrium path becomes virtual.

The implicit FEA method typically fails to converge upon unsta-
ble delamination propagation unless the structure is stabilized by
adding artificial stiffness components [3]. This implies that a trial
and error process is required to identify structural collapse and cal-
culate the post collapse response. Repeated increment cutbacks are
also necessary to reduce the increment size by several orders of
magnitude in order to resolve the dynamic snapping, leading to a
low computational efficiency. Moreover, the virtual branch
remains unknown whereas tracing the full equilibrium path would
allow to infer the structural response associated with different
initial crack lengths without additional analysis.

In the analysis of elastic snap-through and snap-back instabili-
ties, such as buckling of thin shells, load–displacement–constraint
procedures [4] were successfully used to trace the full equilibrium
path. These methods, known as arc-length methods, iterate in the
load–displacement space using the Newton–Raphson (NR) method
[5,6]. The increment Dl of the coordinate s that follows the path,
Fig. 1, is employed as a solution control parameter. An auxiliary
scalar equation constrains the norm of the incremental nodal dis-
placements and the load factor k to follow a spherical or cylindrical
path with radius Dl. Therefore the applied load becomes an addi-
tional variable and it is not under user control. The parameter Dl
controls the progress of the solution, thereby avoiding the high
number of iterations and increment cutbacks while approaching
the critical buckling load. However, in the analysis of elastic insta-
bilities singular points present themselves in the form of saddle
nodes, whereas it was documented that the arc-length method is
not robust enough to resolve the sharp snap back instabilities asso-
ciated with crack propagation [7,8]. In order to analyze this class of
problems the arc-length method was modified by a number of
authors, thereby becoming problem dependent. As a consequence,
the method lost some of its generality and elegance. When the
arc-length method was utilized in conjunction with the VCCT,
the modification mentioned above was also necessary to cope with
the spurious oscillations in the elastic response that are peculiar to
the finite delamination propagation [7], the tangent stiffness
matrix varying from positive definite to negative definite.

The objective of the method proposed hereinafter was to trace
the full equilibrium path in a unified analysis and to increase the
robustness and computational efficiency in the analysis of bi-
dimensional delamination problems with the direct application
of LEFM with VCCT.

2. The crack length control scheme

The proposed crack length control scheme (CLCS) consists in an
automatic incremental solution algorithm for implicit nonlinear
static finite element equations, designed to compute stable and
unstable delamination propagation. Like the arc-length method,
this load–displacement–constraint procedure iterates in the
load–displacement space utilizing the NR method. The control
parameter remains the coordinate s that follows the equilibrium
path, and its linearized increment, the so called arc-length Dl.
However, the constrained variables are not the load and the nodal
displacements, but the load and the delamination length. In order
to define a delamination length, the structural problem has to be
idealized with a bi-dimensional model, such as plane strain, plane
stress or axis-symmetric. The load intensity parameter k can be
defined, for example, as the magnitude of the applied loads resul-
tant, p, divided by a normalizing force magnitude a

k ¼ p
a

ð3Þ

The analyst can arbitrarily select a nodal displacement variable
u that identifies the nondimensional load–displacement space of
interest. The load–displacement response is therefore defined in
a bi-dimensional space k� u=b, where b is a normalizing displace-
ment magnitude, Fig. 2. Starting from a known equilibrium config-
uration at time t and using the notation in [4], the solution of the
governing equations results in the following iterative scheme

sK ði�1ÞDUðiÞ ¼ tþDtR� tþDtFði�1Þ ð4Þ

where sK ði�1Þ is a tangent stiffness matrix, DU(i) is the correction at
iteration i of the current displacement vector, tþDtR is the vector of
externally applied nodal forces and tþDtF is the vector of nodal point
forces equivalent to the internal element stresses, both being
evaluated at time t + Dt. The system of N simultaneous equilibrium
Eq. (4) is solved for DU(i) by splitting the increment Dt, identified by
the arc A � C in Fig. 2, into a growth sub-increment, A � B, which is
solved first, and a subsequent equilibrium sub-increment, B � C,
which computes the new equilibrium configuration tþDtUðiÞ. In
terms of displacements

tþDt
gU
ðg iÞ ¼ t

gU þ Uðg iÞ; Uðg iÞ ¼
Xg i

m¼1

DUðmÞ ð5Þ

tþDtUðiÞ ¼ tþDt
gU þ UðeiÞ; UðeiÞ ¼

Xei

n¼1

DUðnÞ ð6Þ

i ¼ giþ ei ð7Þ



F. Gasco, P. Feraboli / Composite Structures 117 (2014) 267–273 269
In the above equations the subscript g and e refer to the growth and
equilibrium sub-increment.

Having a control parameter implies that the value of a set of
variables, has to be constrained by an additional equation that
includes the control parameter. The constrained variable of the
growth sub-increment is the increment in delamination length
Da. The value of Da is computed by solving a constraint equation
as discussed below and the delamination is propagated through
the number of finite elements that best approximates Da at the
beginning of the first iteration.

In order to solve the severe discontinuity of a finite propagation,
full Newton–Raphson (FNR) iterations ðgiÞ are employed while the
applied displacement is maintained constant, which is accom-
plished by performing the growth sub-increment under displace-
ment control. The equilibrium equations to be solved are then

tþDt
gK
ðg i�1Þ

DUðg iÞ ¼ tþDt
gR
ðg iÞ � tþDt

gF
ðg i�1Þ ð8Þ

Maintaining the applied displacement constant allows to mini-
mize the out-of-balance forces, thereby increasing the convergence
rate. Alternatively constant loading can be employed in case of
complex distributed loads.

The equilibrium sub-increment consists in converging to incip-
ient growth under constant delamination length a + Da. This is
usually a relatively small load increment with mild geometric non-
linearities, which is solved with the FNR method or the BFGS
method with line searches. The constrained variable of the equilib-
rium sub-increment is the applied load, which is controlled by
scaling the applied load vector computed by the last converged
iteration of the growth sub-increment. Scaling is performed by
means of a load increment intensity parameter u

tþDt eK ðei�1ÞDUðeiÞ ¼ u tþDt
gR � tþDtFðei�1Þ ð9Þ

The elastic branch of the equilibrium path is solved as an equi-
librium sub-increment.

In order to develop the constraint equations that relate Dl to Da
and u, let us consider a linearized structural response at the con-
figuration at time t. An approximate relation between the delami-
nation length increment tþDtDa and the arc-length that spans from t
to t + Dt is derived from an explicit computation of the load and
displacement components of Dl using the forward Euler method,
Fig. 3. The time variable associated with this linearly extrapolated
response is indicated as t þ D~t to remark that it is an approximate
estimation. The length tþDtDa is indicated as Da for clarity. By intro-
ducing the compliance C, which refers to the load p and the
Fig. 3. Linear extrapolation of the arc-length components.
displacement u, and expanding the components of the arc-length
with Taylor series we obtain

gD~l ¼ 1
a

t dp
da

� �
u

Da ð10Þ

eDelp ¼ u� 1
a

t dp
da

� �
u

Daþ tp
� �

ð11Þ

eDelu ¼u�1
b

tC
t dp

da

� �
u

Daþ tC tpþ
t dC

da

� �
Da tpþ

t dC
da

� �
t dp

da

� �
u

Da2
� �

ð12Þ

Eq. (12) is simplified by neglecting the last member of the addi-
tion, which gives

eDelu ffi u� 1
b

tC
t dp

da

� �
u

þ
t dC

da

� �
tp

� �
Daþ tC tp

� �
ð13Þ

The first constraint equation is obtained by substituting Eqs.
(10), (11), and (13) into the following arc-length condition

gDel þ eDelp� 	2
þ eDelu

2 ¼ Dl2 ð14Þ

Eq. (14) is a quadratic equation in the unknown Da and can be
written as

XDa2 þWDaþX ¼ 0 ð15Þ

where

X ¼ u2

a2

t dp
da

� �2

u

þ ðu� 1Þ2

b2
tC

t dp
da

� �
u

þ
t dC

da

� �
tp

� �2

ð16Þ

W ¼ 2ðu2 �uÞ
a2

t dp
da

� �
u

tp

þ 2ðu� 1Þ2

b2
tC2 tp

t dp
da

� �
u

þ tC tp2
t dC

da

� �� �
ð17Þ

X ¼ ðu� 1Þ2 1
a2

tp2 þ 1
b2

tC2 tp2
� �

� Dl2 ð18Þ

Eq. (15) is solved at the beginning of each growth sub-increment
in order to update the delamination length for a given Dl. A root of
the equation is positive, which corresponds to the delamination
length increment that allows the solution to proceed forward along
the equilibrium path. The other root is negative, which corresponds
to the opposite path direction. Since a is monotonically increasing
with time, always the positive root should be selected. In order to
solve Eq. (15), however, the values of the derivatives of the load
and the compliance with respect to the crack length and the value
of the load increment intensity parameter u have to be determined.
The two derivatives can be computed by backward difference or
analytic models. The results presented in the next section were
obtained with analytic sensitivity. The description of the numerical
computation of the derivative by backward difference is omitted.
The analytic relation between the variation of compliance and
strain energy upon infinitesimal delamination propagation can be
found by applying the Castigliano’s theorem to a generic linear elas-
tic body with a crack and an applied load p. This relation substituted
into the definition of strain energy release rate gives the following
analytic sensitivity equation [9]

t dC
da

� �
¼ 2b tGT

tp2 ð19Þ

where b is the width of the bi-dimensional structural problem
under consideration. For a displacement controlled structure, with
a similar derivation, we obtain [9]



Table 1
User inputs for the crack length control scheme.

Da0 Damin Damax a b ctol nd

[mm] [mm] [mm] [N�1] [mm�1] [–] [–]

SLB 5 1 10 1 0.018 0.005 12
DCB 1 1 2.5 1 0.0374 0.005 12
Delamination buckling 2 2 5 1000 0.002 0.01 12

Fig. 4. FEM of SLB specimen at zero and maximum unscaled deformation. Mesh size adjacent to delaminated interface 0.125 mm.
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t dp
da

� �
u
¼ �2b tGT

tu
ð20Þ

Although more elegant than the numerical sensitivity, the ana-
lytical sensitivity is less general because, as a condition for the
application of the Castigliano’s theorem, the displacement u must
be the displacement at the point of application of the force p in
the direction of p.

The parameter u can be approximated by the ratio of the
extrapolated load at the end of the increment, tþD~tp, to the one at
the end of the growth sub-increment, tþD~t

gp;

~u ¼
tþD~tp
tþD~t

gp
ð21Þ

By substituting Eq. (20) into (22) and noting that, for small
increments, the derivative of the compliance with respect to the
crack length can be considered constant throughout an equilibrium
sub-increment, we obtain that at incipient delamination growth

~u ¼
tGC

tþD~t
gG

T

 !1=2

ð22Þ

In the above equation the mode mixity is assumed constant
between two consecutive increments. The error associated with
this assumption can be expected to be small provided that elas-
tic instabilities do not occur and that the delamination length
increments are small enough. The strain energy release rate
tþD~t

gG
T

is computed with the following second order numerical
method
Table 2
Unidirectional material data.

E1 E2 = E3 G12 = G13 G23 m
[GPa] [GPa] [GPa] [GPa]

Material 1 146.86 10.62 5.45 3.99 0
Material 2 162 8.34 4.96 3.11 0

a Exponent of BK law.
b Mean values of precracked specimens [11].
c Calculated based on mode mix ratio reported in [12].
tþD~t
gG

T
¼ tGT þ

t dGT

da

� �
u
Daþ 1

2

t
dGT
da

� 	
u
�

t�Dt
dGT
da

� 	
u

tDa
Da2 ð23Þ

The derivatives of the energy release rate were computed with
backward difference between the end and the beginning of the
preceding growth sub-increment.

The system of two coupled constraint Eqs. (15) and (23) is
solved by numerical iterations, starting from an initial numerical
value for Da equal to tDa. The range of allowable values of Da is
limited by a maximum and minimum value Damin and Damax. This
provides the finite delamination length increase to be applied in
the current increment, whereas u is calculated from Eq. (23) at
the beginning of each equilibrium sub-increment using the ERR
computed at the end of the growth sub-increment. A small pertur-
bation increment is applied at the beginning of the analysis in
order to compute the ERR required by the subsequent equilibrium
sub-increment. Once the solution is converged at the critical point,
the delamination is propagated within the first growth sub-
increment by a user defined amount Da0.

The arc-length update, which is controlled by the convergence
rate, is performed as follows

Dlnew ¼
ffiffiffiffiffi
nd

nt

r
Dlold ð24Þ

where nd is the desired number of iterations per increment and nt is
the total number of iterations of the previous increment.

The solution of a growth sub-increment is initially attempted in
one step. However, if either the force or the displacement
convergence criterion is not satisfied within 16 iterations, Da is
12 = m13 = m23 GIC GIIC ga Ply thickness
[MPa] [MPa] [mm]

.33 248b 865b 1.512c 0.127

.34 316 579 1.6 0.127



Fig. 5. Crack length control scheme (CLCS), Abaqus VCCT and closed form (CPT)
solutions of SLB test. Curve markers indicate converged increments. The delami-
nation length [mm] and the total number of iterations required to converge are
indicated in parenthesis.
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progressively cut down automatically. Equilibrium sub-increments
must satisfy the same convergence criteria mentioned above, which
ensure that the equilibrium is satisfied, but they also must satisfy the
following additional ERR criteria

tþDtGðiÞT

tþDtGðiÞC

� 1

�����
����� 6 ctol ð25Þ

which ensures convergence to incipient delamination growth. If
either the force or the displacement condition is not satisfied, the
sub-increment is then reattempted through multiple FNR incre-
ments. The automatic increment control scheme consists in cutting
down the equilibrium sub-increment size into 10 reduced incre-
ments of equal size. If necessary, the size is further reduced to
obtain 100 reduced increments. If the force and displacement crite-
ria are satisfied, the solution is accepted because an equilibrium
configuration has been found. However, if the ERR criterion has
been overshoot, the equilibrium sub-increment restarts from the
new configuration with the increment size cut down described
above. When the increment cut down process is activated, the solu-
tion always restarts form the last iteration that satisfied the force
and displacement convergence criteria. Moreover, u is updated at
the beginning of each increment. A peculiar characteristic of the
CLCS is that at any iteration an equilibrium sub-increment is
declared converged when all three convergence criteria are
satisfied. This feature, together with the increment size cut down,
avoids solution oscillations with repeated overshooting of the ERR
convergence condition. If the reduction of the increment size is
not successful in achieving convergence, artificial stabilization
Fig. 6. Convergence study for contact stabilization coefficient (CS).
techniques are automatically applied for either growth or equilib-
rium sub-increments. The physical meaning and numerical reper-
cussions of the convergence tolerance ctol on the accuracy of the
solution are the same as the release tolerance rtol. For both of them,
if the convergence tolerance is too large inaccurate results are
obtained, whereas if the tolerance is too tight much computational
effort is spent to obtain needless accuracy. The remarkable differ-
ence is that in a conventional VCCT implementation a converged
equilibrium configuration is discarded if the ERR convergence crite-
ria is not satisfied, Eq. (1), whereas the CLCS uses that converged
equilibrium as a restart configuration. Among the input parameters
that were mentioned in this section, seven are peculiar to the CLCS,
Table 1, whereas the others are required by any nonlinear analysis.

The proposed method can be applied to cohesive zone modeling
(CZM), provided that the ERR convergence criteria, Eq. (25), is
replaced by the incipient delamination growth condition specified
by the traction–separation law.

3. Benchmarks

The CLCS was implemented in Abaqus/Standard by means of a
Python script that called a restart job for each sub-increment. Sim-
ulation of a single leg bending test (SLB), a double cantilever beam
test (DCB) and a delamination buckling problem were conducted to
assess the effectiveness of the method in case of unstable delami-
nation propagation, stable propagation and elastic instability
respectively. The performance of the proposed method was com-
pared to established closed form and the Abaqus VCCT solutions.
All the Abaqus VCCT solutions were obtained in a single FNR step,
with an initial increment size of 0.001 and a maximum increment
size of 0.25. The increment size was automatically controlled based
on the default Abaqus increment control scheme settings [10],
except for the maximum number of solution attempts which was
increased to 100 to resolve unstable propagation. The tolerance rtol

was set to 0.1. The settings for the CLCS are listed in Table 1.
Existing experimental data, closed form solutions and numeri-

cal simulations for the material and specimen configuration
adopted for the SLB test can be found in [11,12], Fig. 4. The material
was named ‘material 1’ and its properties are listed in Table 2. The
result obtained with the CLCS method is shown in Fig. 5. The curve
markers indicate the system configurations at the end of each con-
verged equilibrium sub-increments. The load–displacement curve
was in good agreement with the prediction of the classical plate
theory (CPT) analytic solution [13]. All the increments converged
without cutting down the delamination length increment (growth)
or the load increment (equilibrium). Convergence to incipient
growth was always successful at the first attempt, except for the
elastic branch where the linear analytic model that was utilized
Fig. 7. Total number of iterations vs. mesh size at delaminated interface.



Fig. 8. FEM of DCB specimen at zero and maximum unscaled deformation. Mesh size 0.125 mm along the delaminated interface.

Fig. 9. Crack length control scheme (CLCS), Abaqus VCCT and closed form (SDPT)
solutions. Curve markers indicate converged increments. The delamination length
and the number of iterations required to converge are indicated in parenthesis.
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to compute u underestimated the critical load because of geomet-
ric nonlinearities. For the same finite element discretization the
Abaqus VCCT solution cut down the increment size by seven orders
of magnitude in order to capture the sharp load drop and it
required contact stabilization, a stabilization technique based on
localized artificial nodal stiffness at the opening delamination sur-
faces [10]. The stabilization coefficient was determined through a
convergence study. The results shown in Fig. 6 confirm that, when
the structural response is unknown a priori, the unstable propaga-
tion could remain undetected and the critical load be overesti-
mated if an appropriate convergence study is not performed [3].
On the other hand, the CLCS did not require artificial stabilization
Fig. 10. FEM of delamination buckling specimen at zero and maximum unsca
because the applied displacement is fixed during growth. The
number of Abaqus VCCT iterations increased exponentially as the
mesh size at the delaminated interface was reduced, whereas the
CLCS iterations were almost independent from the mesh size and
one or two orders of magnitude smaller, Fig. 7. The solution time
of the BFGS method was on average 65% higher than FNR for a
number of degrees of freedom ranging from 10 to 64 k.

The structural response of an arbitrary DCB specimen made of
‘material 2’, Fig. 8, was calculated with the CLCS, the Abaqus VCCT
and the closed form solution based on the shear deformable plate
theory (SDPT) [14]. The results of the three analysis methods were
in good agreement, Fig. 9. Similar to the SLB example, all the
increments converged at the first attempt, except for the large
increment that traced the elastic branch. In total 68 FNR iterations
were necessary for the CLCS to solve the problem, whereas the
Abaqus VCCT solution required 856 iterations for the single
advancement method and 805 iterations for the multiple advance-
ments method. The BFGS method was as computationally efficient
as the FNR method in solving equilibrium sub-increments, taking
about the same average CPU time per increment.

The simultaneous occurrence of unstable delamination propa-
gation and elastic instability was reproduced by means of a dela-
minated plate loaded under uniaxial compression, Fig. 10. The
material was ‘material 2’ with degraded GIC and GIIC to 189 and
347 J/m2, respectively. The load was applied at the mid-depth of
the lower sub-laminate. The computed response is plotted in
Fig. 11. The size of the first four equilibrium sub-increments on
the softening branch, indicated with hollow markers, was auto-
matically cut down by the CLCS. The reason was the overshoot of
the ERR convergence criterion. Also the increments E to H failed
the ERR convergence condition, but GT did not exceeded GC. In this
case the increment was automatically simply restarted with an
led deformation. Mesh size adjacent to delaminated interface 0.125 mm.



Fig. 11. Crack length control scheme (CLCS) and Abaqus VCCT solutions of delam-
ination buckling. Curve markers indicate converged configurations. The delamina-
tion length and the number of iterations required to converge are indicated in
parenthesis.
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updated u value as described in the previous section. All the
growth sub-increments converged at the first attempt. Further-
more, the CLCS did not require the use of contact stabilization
unlike the Abaqus VCCT solution. The solution of the constraint
equations provided large values of Da, that largely exceeded the
specified Damax. The reason was the nonlinear structural response
caused by the elastic instability. The use of analytic sensitivity to
compute the load and compliance derivatives led to particularly
large errors because of the combined effect of assuming linear elas-
tic structural response and of the linearization performed by the
forward Euler method. The numeric sensitivity performed slightly
better, but the computed values for Da were still affected by a too
large error to be utilized in the arc-length control. Also the abrupt
change in the delamination mode mixity caused by the local buck-
ling contributed to the arc-length control failure. To cope with the
nonlinear response, the algorithm was modified so that a constant
delamination length increment, equal to Damin, was prudentially
used if the computed valued of Da was larger than 2Damax or in
case of numerical divergence in the solution of the constraint equa-
tions. Nevertheless the CLCS required 293 FNR iterations to solve
the problem, compared to the 1698 iterations of the Abaqus VCCT
with a single advancement per increment and the 612 iterations
with multiple advancements per increment. The BFGS method
showed about the same computational efficiency of the FNR
method.

4. Conclusions

Although it does not guarantee convergence, the CLCS method
showed improved convergence rate and robustness with respect
to the conventional VCCT implementation in tracing the complete
equilibrium path of the structure with continuation through singu-
lar points. The enhanced computational efficiency was attributed
to three reasons. The first was the capability of advancing the
delamination by multiple element lengths. The second consisted
in controlling the load increment size by means of the energy
release rate, thereby avoiding unduly expensive load cutbacks.
The last was the automatic selection of the largest increment size
that ensured the computation of the structural response with the
desired resolution. The use of the delamination length as a con-
strained variable, instead of the nodal displacements used by the
arc-length method, led to an improved robustness. In fact, since
the delamination length is monotonically increasing with time,
the algorithm never fails in selecting the correct equilibrium path
direction, even in presence of arbitrarily sharp singularities in the
structural response. The drawback of the CLCS consists in the
dependency of the constraint equation and convergence criteria
to the delamination topology, i.e. to the element connectivity. As
a result, the delamination has to be tracked constantly during the
solution process, leading to a cumbersome addition to a finite ele-
ment code. This requirement seems to be the main limitation for
the extension of the method to the solution of three-dimensional
problems.
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